教学科研成果
获奖情况:
(1) 永利官网青年拔尖人才
(2) 工程类专业学位研究生在线示范课程(2/3)
(3) 第七届中国医疗器械创新创业大赛三等奖
发明专利:
1.一种组织工程软骨支架的制备方法. 管娟, 吴素君, 毛智南, 毕雪薇. 专利号: ZL 2019 1 1257846.1
2.一种可生物吸收的骨科植入材料及其制备方法. 管娟, 吴素君, 田文晗, 刘玉增. 专利号:ZL 2021 1 1375191.6
3.一种顺序和持续释放多肽和因子的软骨组织修复支架及其制备方法. 管娟, 毛智南, 舒雄, 毕雪薇, 吴素君. 专利号:ZL 2022 1 0953614.6
代表性论文:
[1] Tian W.H., Liu Y.Z.*, Han B., Cheng F.Q., Hai Y., Yang K., Hu W.Y., Wu S.J., Yang J.P., Chen Q., Ritchie R. O.*, He G.P.*, Guan J.*. Mechanically robust surface-degradable implant from fiber silk composites demonstrates regenerative potential. Bioactive Materials. 2025, 45, 584-598. DOI: 10.1016/j.bioactmat.2024.11.036.
[2] Wu Z.H.#, Zhao Y.#, Duo Y.N., Li B.F., Li L., Chen B.H., Yang K., Su S.W., Guan J.*, Wen L.*, Liu M.J. Silk flocked flexible sensor capable of wide-range and sensitive pressure perception. ACS Appl. Mater. Interfaces 2024, 16, 46, 64222–64232. DOI: 10.1021/acsami.4c13315
[3] Zhao Y., Puthia M., Jo S.-M., Guan J.*, Liu M., Wu S.*, Photoluminescent and tough hydrogels from silk fibroin and polyacrylic acid complexed with europium. J. Appl. Polym. Sci. 2024, 141(15), e55213. DOI: 10.1002/app.55213
[4] Yang K., Yu H.T., Cao X.R., Guan J.*, Cai S.Y., Yang Z.X., Huang W., Wang B., Qin N.N., Wu Z.H., Tian W.H., Zhang S.H.*, Ritchie R.O.*. The critical role of corrugated lamellae morphology on the tough mechanical performance of natural Syncerus caffer horn sheath. Cell Rep. Phys. Sci. 2023,4(9):101576. DOI: 10.1016/j.xcrp.2023.101576
[5] Zhao Y., Wu Z.H., Chen L., Shu X.*, Guan J.*, Yang K., Shi R.Y., Li Y.B.*, Numata K., and Shao Z.Z. Restructuring the interface of silk–polycaprolactone biocomposites using rigid-flexible agents. Biomacromolecules 2023 24 (1), 332-343. DOI: 10.1021/acs.biomac.2c01162
[6] Mao, Z., Bi, X., Wu, C., Zheng, Y., Shu, X.*, Wu, S.*, Guan, J.*, & Ritchie, R. O. A cell-free silk fibroin biomaterial strategy promotes in situ cartilage regeneration via programmed releases of bioactive molecules. Advanced healthcare materials 2022, 12, 2201588. DOI: 10.1002/adhm.202201588
[7] Wang Y., Wu Z.H., Zhou L., Chen X., Guan J*, Shao ZZ*. Peculiar tensile and fracture behaviors of natural silk fiber in the presence of an artificial notch, Macromolecules, 2022, 55, 24, 11059-11067. DOI: 10.1021/acs.macromol.2c01485
[8] Wu, Z., Zhao, Y., Yang, K., Guan, J.*, Wang, S., Gu, Y., Li, M., Feng, Y., Feng, W.*, Ritchie, R. O.*, Enhancing the Mechanical Performance of Fiber-Reinforced Polymer Composites Using Carbon Nanotubes as an Effective Nano-Phase Reinforcement. Adv. Mater. Interfaces 2022, 2201935. DOI: 10.1002/admi.202201935
[9] Shi R.Y., Ye D.D., Ma K., Tian W.H., Zhao Y., Guo H.B., Shao Z.Z., Guan J.*, Ritchie R.O.* Understanding the Interfacial Adhesion between Natural Silk and Polycaprolactone for Fabrication of Continuous Silk Biocomposites. ACS Applied Materials & Interfaces 2022, 14(41):46932-46944. DOI: 10.1021/acsami.2c11045
[10] Shi R.Y., Cai X.X., He G.P., Guan J.*, Liu Y.*, Lu H., Mao Z.N., Li Y., Guo H.B., Hai Y. Extrusion Printed Silk Fibroin Scaffolds with Post-mineralized Calcium Phosphate as a Bone Structural Material. Int J Bioprint. 2022 Jul 26;8(4):596. DOI: 10.18063/ijb.v8i4.596.
[11] Yang K., Wu Z.H., Zhou C.G., Cai S.Y., Wu Z.T., Tian W.H., Wu S.J., Ritchie R.O.*, Guan J.* Comparison of epoxy resin matrices in natural silk-reinforced composites for rational design of tough composites. Composites Part A. 2022, 154, 106760. DOI: 10.1016/j.compositesa.2021.106760
[12] Tian W.H., Yang K., Wu S.J., Yang J.P., Luo H.Y., Guan J.*, Ritchie O.R.* Impact of hydration on the mechanical properties and damage mechanisms of natural silk fibre reinforced composites. Composites Part A. 2021, 147, 106458. DOI: 10.1016/j.compositesa.2021.106458
[13] Zhao Y., Zhu S.Z., Guan J.*, Wu S.J.* Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels. Acta Biomaterialia. 2021, 125, 57-71. DOI: 10.1016/j.actbio.2021.02.018
[14] Mao Z.N., Bi X.W., Ye F., Du P.Y., Shu X., Sun L., Guan J.*, Li X.M., Wu S.J.* The relationship between cross-linking structure and silk fibroin scaffold performance for soft tissue engineering. International Journal of Biological Macromolecules 2021, 182, 1268-1277. DOI: 10.1016/j.ijbiomac.2021.05.058
[15] Mao Z.N., Bi X.W., Ye F., Shu X., Sun L., Guan J.*, Ritchie R.O., Wu S.J.* Controlled Cryogelation and Catalytic Cross-Linking Yields Highly Elastic and Robust Silk Fibroin Scaffolds. ACS Biomaterials Science and Engineering 2020, 6, 8, 4512-4522. DOI: 10.1021/acsbiomaterials.0c00752
[16] Su S.W., Wang S.Q., Li L., Xie Z.X, Hao F.C., Xu J.L., Wang S.K., Guan J.*, Wen L.* Vertical fibrous morphology and structure-function relationship in natural and biomimetic suction-based adhesion discs. Matter 2020, 2(5), 1207-1221. DOI: 10.1016/j.matt.2020.01.018
[17] Yang K., Guan J.*, Numata K., Wu S.J., Shao Z.Z., Ritchie R.O.* Integrating tough Antheraea pernyi silk and strong carbon fibers for impact-critical structural composites. Nature Communications 2019 (10), 3786. DOI: 10.1038/s41467-019-11520-2
[18] Yang K., Yazawa K., Tsuchiya K., Numata K.*, and Guan J.*. Molecular Interactions and Toughening Mechanisms in Silk Fibroin Epoxy Resin Blend Films. Biomacromolecules 2019, 20(6): 2295-2304. DOI: 10.1021/acs.biomac.9b00260
[19] Wu C.E., Yang K., Gu Y.Z., Xu J., Ritchie R.O.* and Guan J.* Mechanical properties and impact performance of silk-epoxy resin composites modulated by flax fibres. Composites Part A: Applied Science and Manufacturing 2019;117:357-68.DOI: 10.1016/j.compositesa.2018.12.003
[20] Guan, J.*; Zhu, W.; Liu, B.; Yang, K.; Vollrath, F.; Xu, J. Comparing the microstructure and mechanical properties of Bombyx mori and Antheraea pernyi cocoon composites. Acta Biomaterialia 2017, 47, 60-70. DOI:10.1016/j.actbio.2016.09.042
[21] Guan, J.*; Wang, Y.; Mortimer, B.; Holland, C.; Shao, Z.; Vollrath, F.* Glass transitions in native silk fibres studied by Dynamic Mechanical Thermal Analysis. Soft Matter 2016, 12, 5926-5936. DOI: 10.1039/C6SM00019C
[22] Guan J., Porter D.*, Vollrath F.* Thermally induced changes in dynamic mechanical properties of native silks. Biomacromolecules 2013, 14(3), 930-937. DOI: 10.1021/bm400012k
[23] Porter D.*, Guan J., Vollrath F. Spider Silk: super material or thin fibre? Advanced materials 2013, 25(9), 1275-1279. DOI: 10.1002/adma.201204158
[24] Guan J., Porter D.*, Vollrath F.* Silks cope with stress by tuning their mechanical properties under load. Polymer 53 (13), 2717–2726. DOI: 10.1016/j.polymer.2012.04.017
[25] Guan J., Vollrath F.*, Porter D.* Two mechanisms for supercontraction in Nephila spider dragline silk. Biomacromolecules 12 (11), 4030–4035. DOI: 10.1021/bm201032v
[26] Guan J., Porter D., Tian K., Shao Z.Z., Chen X.* Morphology and mechanical properties of soy protein scaffolds made by directional freezing. Journal of Applied Polymer Science, 118 (3) 1658–1665. DOI: 10.1002/app.32579